Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Lupus ; : 9612033241245549, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594808

RESUMO

OBJECTIVE: To share our experience with belimumab in lupus pregnant women and to review the relevant published literature on its use in this scenario. METHODS: A prospective observational study of pregnant patients with lupus was conducted. Additionally, MEDLINE and EMBASE databases were searched, and a secondary hand search of the literature was performed. Studies were evaluated and visualised descriptively. RESULTS: Sixteen pregnancies of 12 lupus women were included, six (involving eight pregnancies) received belimumab throughout their illness, five of them during some period of gestation. In this group, there was one miscarriage, one elective termination and seven live foetuses (including two live twins). There was one type I intrauterine growth retardation, and a preterm pregnancy due to premature rupture of membranes (PPROM). One mild lupus flare was detected. There were no cases of pre-eclampsia, gestational diabetes mellitus or hypertension. All neonates had normal Apgar scores at birth, none needed critical care. There were no congenital anomalies. After the search, we identified 10 case reports and case series, and five registries. Among the 39 reported cases (41 pregnancies), there were 5 PPROM, 4 pre-eclampsia, and 1 eclampsia. All women made full recoveries. Nineteen new-borns had low birth weight. There were no malformations. While registries did not indicate an increased risk of birth defects or pregnancy loss, there was a higher risk of neonatal infections. CONCLUSIONS: Belimumab may be an option for pregnant women with difficult-to-control lupus. Further research is needed to confirm the absence of association between belimumab and foetal harm.

2.
Food Chem ; 447: 138938, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38458130

RESUMO

The chemical composition of Parmigiano Reggiano (PR) hard cheese can be significantly affected by different factors across the dairy supply chain, including ripening, altimetric zone, and rind inclusion levels in grated hard cheeses. The present study proposes an untargeted metabolomics approach combined with machine learning chemometrics to evaluate the combined effect of these three critical parameters. Specifically, ripening was found to exert a pivotal role in defining the signature of PR cheeses, with amino acids and lipid derivatives that exhibited their role as key discriminant compounds. In parallel, a random forest classifier was used to predict the rind inclusion levels (> 18%) in grated cheeses and to authenticate the specific effect of altimetry dairy production, achieving a high prediction ability in both model performances (i.e., ∼60% and > 90%, respectively). Overall, these results open a novel perspective to identifying quality and authenticity markers metabolites in cheese.


Assuntos
Queijo , Metabolômica , Aminoácidos
3.
J Bacteriol ; 206(4): e0006824, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517170

RESUMO

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Animais , Proteínas de Bactérias/metabolismo , Virulência , Proteínas Motores Moleculares/metabolismo , Flavobacterium , Doenças dos Peixes/microbiologia
4.
Food Chem ; 438: 138037, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38011789

RESUMO

Phytochemical-rich antioxidant extracts were obtained from Ascophyllum nodosum (AN) using microwave-assisted extraction (MAE). Critical extraction factors such as time, pressure, and ethanol concentration were optimized by response surface methodology with a circumscribed central composite design. Under the optimal MAE conditions (3 min, 10.4 bar, 46.8 % ethanol), the maximum recovery of phytochemical compounds (polyphenols and fucoxanthin) with improved antioxidant activity from AN was obtained. In addition, the optimized AN extract showed significant biological activities as it was able to scavenge reactive oxygen and nitrogen species, inhibit central nervous system-related enzymes, and exhibit cytotoxic activity against different cancer cell lines. In addition, the optimized AN extract showed antimicrobial, and anti-quorum sensing activities, indicating that this extract could offer direct and indirect protection against infection by pathogenic microorganisms. This work demonstrated that the sustainably obtained AN extract could be an emerging, non-toxic, and natural ingredient with potential to be included in different applications.


Assuntos
Ascophyllum , Micro-Ondas , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Etanol/química
5.
Food Chem ; 439: 138231, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113658

RESUMO

This study aimed to determine how the addition of gellan, guar, locust bean, and xanthan gums affected the polyphenol profile of Aronia melanocarpa puree and the human gut microbiota after in vitro gastrointestinal digestion and large intestine fermentation. The different gums distinctively affected the content and bioaccessibility of phenolics in Aronia puree, as outlined by untargeted metabolomics. The addition of locust bean gum increased the levels of low-molecular-weight phenolics and phenolic acids after digestion. Gellan and guar gums enhanced phenolic acids' bioaccessibility after fermentation. Interactions between digestion products and fecal bacteria altered the composition of the microbiota, with the greatest impact of xanthan. Locust bean gum promoted the accumulation of different taxa with health-promoting properties. Our findings shed light on the added-value properties of commercial gums as food additives, promoting a distinctive increase of polyphenol bioaccessibility and shifting the gut microbiota distribution, depending on their composition and structural features.


Assuntos
Microbioma Gastrointestinal , Photinia , Humanos , Fermentação , Multiômica , Digestão , Fenóis/química , Polifenóis
6.
J Infect Dis ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041851

RESUMO

Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of the case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill understood adaptation of the pathogen to the host. Here, we investigated three pairs of Escherichia coli strains from BJI cases and their relapses to unravel in-patient adaptation. Whole genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of two virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.

7.
Microbiome ; 11(1): 252, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951983

RESUMO

BACKGROUND: Perturbations of animal-associated microbiomes from chemical stress can affect host physiology and health. While dysbiosis induced by antibiotic treatments and disease is well known, chemical, nonantibiotic drugs have recently been shown to induce changes in microbiome composition, warranting further exploration. Loperamide is an opioid-receptor agonist widely prescribed for treating acute diarrhea in humans. Loperamide is also used as a tool to study the impact of bowel dysfunction in animal models by inducing constipation, but its effect on host-associated microbiota is poorly characterized. RESULTS: We used conventional and gnotobiotic larval zebrafish models to show that in addition to host-specific effects, loperamide also has anti-bacterial activities that directly induce changes in microbiota diversity. This dysbiosis is due to changes in bacterial colonization, since gnotobiotic zebrafish mono-colonized with bacterial strains sensitive to loperamide are colonized up to 100-fold lower when treated with loperamide. Consistently, the bacterial diversity of gnotobiotic zebrafish colonized by a mix of 5 representative bacterial strains is affected by loperamide treatment. CONCLUSION: Our results demonstrate that loperamide, in addition to host effects, also induces dysbiosis in a vertebrate model, highlighting that established treatments can have underlooked secondary effects on microbiota structure and function. This study further provides insights for future studies exploring how common medications directly induce changes in host-associated microbiota. Video Abstract.


Assuntos
Loperamida , Microbiota , Humanos , Animais , Loperamida/efeitos adversos , Peixe-Zebra/microbiologia , Disbiose/induzido quimicamente , Constipação Intestinal/induzido quimicamente , Bactérias
8.
Foods ; 12(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509746

RESUMO

The aim of the present work was to improve the stability and bioaccessibility of carotenoids from green oil extracts obtained from papaya by-products using oil-in-water (O/W) emulsions. The effects of different concentrations of pectin (1%, 2%, and 3%), a high-molecular-size emulsifier, together with Tween 20, a low-molecular-size emulsifier, high-speed homogenization conditions (time: 2, 3, 4, and 5 min; rpm: 9500, 12,000, 14,000, and 16,000 rpm), and high-pressure homogenization (HPH) (100 MPa for five cycles) were evaluated to determine the optimal conditions for obtaining O/W stable emulsions with encapsulated carotenoids. Soybean, sunflower, and coconut oils were used to formulate these O/W emulsions. The bioaccessibility of the main individual encapsulated papaya carotenoids was evaluated using the INFOGEST digestion methodology. In addition, the microstructures (confocal and optical microscopy) of the O/W carotenoid emulsions and their behavior during in vitro digestion phases were studied. Sunflower O/W carotenoid emulsions showed smaller mean particle size, higher negative ζ-potential, and higher viscosity than soybean O/W emulsions. Particle size reduction in the O/W emulsions using the HPH process improved the bioaccessibility of papaya encapsulated carotenoids. In these O/W emulsions, depending on the vegetable oil, lycopene was the carotenoid with the highest bioaccessibility (71-64%), followed by (all-E)-ß-carotene (18%), (all-E)-ß-cryptoxanthin (15%), and (all-E)-ß-cryptoxanthin laurate (7-4%). These results highlight the potential of using green carotenoid papaya extracts to formulate O/W emulsions to enhance carotenoid bioactivity by efficiently preventing degradation and increasing in vitro bioaccessibility.

9.
Plants (Basel) ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514310

RESUMO

Taxus cell cultures are a reliable biotechnological source of the anticancer drug paclitaxel. However, the interplay between taxane production and other metabolic pathways during elicitation remains poorly understood. In this study, we combined untargeted metabolomics and elicited Taxus baccata cell cultures to investigate variations in taxane-associated metabolism under the influence of 1 µM coronatine (COR) and 150 µM salicylic acid (SA). Our results demonstrated pleiotropic effects induced by both COR and SA elicitors, leading to differential changes in cell growth, taxane content, and secondary metabolism. Metabolite annotation revealed significant effects on N-containing compounds, phenylpropanoids, and terpenoids. Multivariate analysis showed that the metabolomic profiles of control and COR-treated samples are closer to each other than to SA-elicited samples at different time points (8, 16, and 24 days). The highest level of paclitaxel content was detected on day 8 under SA elicitation, exhibiting a negative correlation with the biomarkers kauralexin A2 and taxusin. Our study provides valuable insights into the intricate metabolic changes associated with paclitaxel production, aiding its potential optimization through untargeted metabolomics and an evaluation of COR/SA elicitor effects.

10.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373528

RESUMO

Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. In this work, vapor pressures between 278.15 and 323.15 K, densities and enthalpies of mixtures between 288.15 and 318.15 K for the binary mixture (2-propanol + 1,8-cineole) have been measured. From the vapor pressure data, activity coefficients and excess Gibbs energies were calculated via the Barker's method and the Wilson equation. Excess molar volumes and excess molar enthalpies were also obtained from the density and calorimetric measurements. Thermodynamic consistency test between excess molar Gibbs energies and excess molar enthalpies has been carried out using the Gibbs-Helmholtz equation. Robinson-Mathias, and Peng-Robinson-Stryjek-Vera together with volume translation of Peneloux equations of state (EoS) are considered, as well as the statistical associating fluid theory that offers a molecular vision quite suitable for systems having highly non-spherical or associated molecules. Of these three models, the first two fit the experimental vapor pressure results quite adequately; in contrast, only the last one approaches the volumetric behavior of the system. A brief comparison of the thermodynamic excess molar functions for binary mixtures of short-chain alcohol + 1,8-cineole (cyclic ether), or +di-n-propylether (lineal ether) is also included.


Assuntos
1-Propanol , 2-Propanol , Eucaliptol , Termodinâmica , Gases , Propanóis
11.
Antioxidants (Basel) ; 12(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37107262

RESUMO

Elicited cell cultures of Taxus spp. are successfully used as sustainable biotechnological production systems of the anticancer drug paclitaxel, but the effect of the induced metabolomic changes on the synthesis of other bioactive compounds by elicitation has been scarcely studied. In this work, a powerful combinatorial approach based on elicitation and untargeted metabolomics was applied to unravel and characterize the effects of the elicitors 1 µM of coronatine (COR) or 150 µM of salicylic acid (SA) on phenolic biosynthesis in Taxus baccata cell suspensions. Differential effects on cell growth and the phenylpropanoid biosynthetic pathway were observed. Untargeted metabolomics analysis revealed a total of 83 phenolic compounds, mainly flavonoids, phenolic acids, lignans, and stilbenes. The application of multivariate statistics identified the metabolite markers attributed to elicitation over time: up to 34 compounds at 8 days, 41 for 16 days, and 36 after 24 days of culture. The most notable metabolic changes in phenolic metabolism occurred after 8 days of COR and 16 days of SA elicitation. Besides demonstrating the significant and differential impact of elicitation treatments on the metabolic fingerprint of T. baccata cell suspensions, the results indicate that Taxus ssp. biofactories may potentially supply not only taxanes but also valuable phenolic antioxidants, in an efficient optimization of resources.

12.
J Hazard Mater ; 453: 131331, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060751

RESUMO

Metallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Metagenômica , Fermentação , Nanopartículas Metálicas/toxicidade , Titânio , Metabolômica , Escherichia coli , Digestão
13.
Food Chem ; 418: 135959, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996655

RESUMO

Wheat flour is one of the most prevalent foodstuffs for human consumption, and novel strategies are underway to enhance its nutritional properties. This work evaluated wholegrain flours from bread wheat lines with different amylose/amylopectin ratios through in vitro starch digestion and large intestine fermentation. High-amylose flours presented a higher resistant starch content and lower starch hydrolysis index. Moreover, UHPLC-HRMS metabolomics was carried out to determine the profile of the resulting in vitro fermentates. The multivariate analysis highlighted distinctive profiles between the flours derived from the different lines compared to the wild type. Peptides, glycerophospholipids, polyphenols, and terpenoids were identified as the main markers of the discrimination. The high-amylose flour fermentates showed the richest bioactive profile, containing stilbenes, carotenoids, and saponins. Present findings pave the way toward applying high-amylose flours to design novel functional foods.


Assuntos
Amilose , Farinha , Humanos , Triticum/química , Fermentação , Amido/química , Metabolômica , Digestão
14.
Foods ; 12(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900515

RESUMO

A multi-omics approach was adopted to investigate the impact of lactic acid fermentation and seed germination on the composition and physicochemical properties of rye doughs. Doughs were prepared with either native or germinated rye flour and fermented with Saccharomyces cerevisiae, combined or not with a sourdough starter including Limosilactobacillus fermentum, Weissella confusa and Weissella cibaria. LAB fermentation significantly increased total titrable acidity and dough rise regardless of the flour used. Targeted metagenomics revealed a strong impact of germination on the bacterial community profile of sprouted rye flour. Doughs made with germinated rye displayed higher levels of Latilactobacillus curvatus, while native rye doughs were associated with higher proportions of Lactoplantibacillus plantarum. The oligosaccharide profile of rye doughs indicated a lower carbohydrate content in native doughs as compared to the sprouted counterparts. Mixed fermentation promoted a consistent decrease in both monosaccharides and low-polymerization degree (PD)-oligosaccharides, but not in high-PD carbohydrates. Untargeted metabolomic analysis showed that native and germinated rye doughs differed in the relative abundance of phenolic compounds, terpenoids, and phospholipids. Sourdough fermentation promoted the accumulation of terpenoids, phenolic compounds and proteinogenic and non-proteinogenic amino acids. Present findings offer an integrated perspective on rye dough as a multi-constituent system and on cereal-sourced bioactive compounds potentially affecting the functional properties of derived food products.

15.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778358

RESUMO

Gnotobiotic animal models reconventionalized under controlled laboratory conditions with multi-species bacterial communities are commonly used to study host-microbiota interactions under presumably more reproducible conditions than conventional animals. The usefulness of these models is however limited by inter-animal variability in bacterial colonization and our general lack of understanding of the inter-individual fluctuation and spatio-temporal dynamics of microbiota assemblies at the micron to millimeter scale. Here, we show underreported variability in gnotobiotic models by analyzing differences in gut colonization efficiency, bacterial composition, and host intestinal mucus production between conventional and gnotobiotic zebrafish larvae re-conventionalized with a mix of 9 bacteria isolated from conventional microbiota. Despite similar bacterial community composition, we observed high variability in the spatial distribution of bacteria along the intestinal tract in the reconventionalized model. We also observed that, whereas bacteria abundance and intestinal mucus per fish were not correlated, reconventionalized fish had lower intestinal mucus compared to conventional animals, indicating that the stimulation of mucus production depends on the microbiota composition. Our findings, therefore, suggest that variable colonization phenotypes affect host physiology and impact the reproducibility of experimental outcomes in studies that use gnotobiotic animals. This work provides insights into the heterogeneity of gnotobiotic models and the need to accurately assess re-conventionalization for reproducibility in host-microbiota studies.

16.
Front Cell Infect Microbiol ; 13: 1093393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816589

RESUMO

Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Virulência , Peptídeo Hidrolases/metabolismo , Peixe-Zebra , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Fatores de Virulência/metabolismo , Flavobacterium
17.
Food Chem ; 409: 135295, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36603477

RESUMO

The current consumers' demand for food naturalness is urging the search for new functional foods of natural origin with enhanced health-promoting properties. In this sense, algae constitute an underexplored biological source of nutraceuticals that can be used to fortify food products. Both marine macroalgae (or seaweeds) and microalgae exhibit a myriad of chemical constituents with associated features as a result of their primary and secondary metabolism. Thus, primary metabolites, especially polysaccharides and phycobiliproteins, present interesting properties to improve the rheological and nutritional properties of food matrices, whereas secondary metabolites, such as polyphenols and xanthophylls, may provide interesting bioactivities, including antioxidant or cytotoxic effects. Due to the interest in algae as a source of nutraceuticals by the food and related industries, novel strategies should be undertaken to add value to their derived functional components. As a result, metabolomics is considered a high throughput technology to get insight into the full metabolic profile of biological samples, and it opens a wide perspective in the study of algae metabolism, whose knowledge is still little explored. This review focuses on algae metabolism and its applications in the food industry, paying attention to the promising metabolomic approaches to be developed aiming at the functional characterization of these organisms.


Assuntos
Suplementos Nutricionais , Alga Marinha , Alga Marinha/química , Alimento Funcional , Antioxidantes , Metabolômica
18.
Food Chem ; 412: 135549, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36706508

RESUMO

Polyphenols are multifaceted bioactive compounds, but little is known about their real impact on human health after consumption. In this work, the phenolic profiling of quebracho, yellow maize, and violet rice extracts was comprehensively investigated, together with the impact of in vitro digestion and colonic fermentation on the bioaccessibility and bioavailability of these phytochemicals. The different matrices showed distinct profiles, potentially influencing in vitro starch digestion under cooking conditions. Furthermore, after the extracts underwent in vitro gastrointestinal digestion and faecal fermentation, phenolics exhibited a differential bioaccessibility trend at every digestion level, with matrix-dependent behaviour. The bioavailability results suggest that polyphenols are metabolised during colonic fermentation, mainly into tyrosols, phenolic acids, and lignans, which are partially absorbed by Caco-2 cells. By combining metabolomics with in vitro cellular methods, this research provides new insights into the fate of these phytochemicals in the gut, yielding comprehensive data on their consumption in food matrices.


Assuntos
Lignanas , Extratos Vegetais , Humanos , Extratos Vegetais/química , Disponibilidade Biológica , Células CACO-2 , Digestão , Fenóis/química , Polifenóis/metabolismo
19.
Crit Rev Food Sci Nutr ; 63(5): 657-673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34278850

RESUMO

Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.


Assuntos
Fagopyrum , Plantas Medicinais , Fagopyrum/química , Flavonoides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glicosídeos
20.
Food Chem ; 404(Pt A): 134540, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240571

RESUMO

Wheat is a prevalent food worldwide, although its production arises several tonnes of industrial by-products that merit valorisation, owing to sustainable demands. In this work, an untargeted metabolomics approach was applied to shed light on the profile of free and bound phenolic compounds in white and wholegrain flours, as well as the major wheat by-products, namely wheat bran, wheat shorts and wheat middlings. By-products and wholegrain flours were found to be rich sources of ferulic acid derivatives, lignans, and alkylresorcinols, mostly bound to wheat fibre components, whereas different flavonoids were found in their free forms. Afterwards, the in vitro gastrointestinal digestion of these matrices showed that flour phenolics, in particular lignans, were more bioaccessible than those from wheat by-products. These results support the carrier effect attributed to dietary fibre and open a wide perspective on the use of underexploited wheat by-products to formulate novel functional foods.


Assuntos
Farinha , Lignanas , Farinha/análise , Polifenóis/análise , Triticum/metabolismo , Fenóis/análise , Fibras na Dieta/análise , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...